A map of faculty users will soon be on the site. How many countries do you think have registered faculty VIPEr users?

Submitted by Chip Nataro / Lafayette College on Tue, 11/11/2014 - 20:40

The list of faculty users has been mapped and will be posted to the site soon. How many different countries do you think have registered VIPEr faculty users?

The Iron that Keeps and Kills Us

Submitted by Katherine Franz / Duke University, Department of Chemistry on Mon, 09/16/2013 - 14:10
Description

This in-class activity requires that the students read an article in The Atlantic about an interesting (and modern) case of the plague.  The article provides a great platform to showcase the Inorganic side of broad societal themes like evolutionary biology, environmental and hereditary influences on disease, and the collaboration between biology, medicine, and history.  The article itself contains little chemistry, but can be used to guide students into learning about iron in bioinorganic chemistry.

 

Accompanying article found here:

IC Top 10 first day activity

Submitted by Sheila Smith / University of Michigan- Dearborn on Thu, 09/05/2013 - 09:32
Description

I modified the Barb Reisner/Joanne Stewart/Maggie Geselbracht First Day TOC activity (https://www.ionicviper.org/class-activity/introducing-inorganic-chemist…) to take advantage of the quarterly list of Top 10 Most Read articles that IC sends out.  This is delivered to me as an email from ACS pubs and I am sure that it is available to anyone who wished to subscribe to the updates.  I have attached a pdf copy of the August 2013 update as an example.

Synthesis and Migratory-Insertion Reactivity of CpMo(CO)3(CH3): Small-Scale Organometallic Preparations Utilizing Modern Glove-Box Techniques

Submitted by Matt Whited / Carleton College on Mon, 08/26/2013 - 14:22
Description

This laboratory experiment spans three weeks and introduces advanced undergraduates to modern small-scale synthesis techniques involving an inert-atmosphere glove box.  The robust syntheses transform [CpMo(CO3]2 into the methylated CpMo(CO)3(CH3) and examine the phosphine-induced migratory insertion to form various Cp-supported Mo(II) acetyl complexes.  At each step in the synthesis, a combination of IR and multinuclear (1H, 13C, and 31P) NMR spectroscopies allow students to assess the purity of their products and