Kinetics of electrocatalytic reduction of carbon dioxide by Mn catalysts containing bulky bipyridine ligands

Submitted by Kathleen Field / WGU on Thu, 07/02/2015 - 17:23
Description

This question set has students examine the kinetics of the electrocatalytic reduction of CO2 to CO described in Sampson, D.L.; Nguygen, D., Grice, K.A.; Moore, C.E.; Rheingold, A.L.; Kubiak, C.P. Manganese Catalysts with Bulky Bipyridine Ligands for the Electrocatalytic Reduction of Carbon Dioxide:  Eliminating Dimerization and Altering Catalysis.  J. Am. Chem. Soc. 2014, 136, 5460-5471. 

Analyzing a journal article for basic themes, roles of authors, and the scientific method

Submitted by Darren Achey / Kutztown University on Thu, 07/02/2015 - 15:03
Description

This literature discussion is meant to give students an understanding of both the key concept-driven and more “meta” information of a literature paper.  Students will use Jillian Dempsey’s paper, “Electrochemical hydrogenation of a homogeneous nickel complex to form a surface-adsorbed hydrogen-evolving species,” to investigate paper authorship, how the scientific method is used in research, and how to understand the important findings of a research article.

 

Reference: Chem. Commun., 2015, 51, 5290-5293

DOI:10.1039/C4CC08662G

 

A discussion on "Electrochemical formation of a surface-adsorbed hydrogen-evolving species"

Submitted by Kevin Hoke / Berry College on Thu, 07/02/2015 - 14:22
Description
The paper entitled “Electrochemical hydrogenation of a homogeneous nickel complex to form a surface adsorbed hydrogen-evolving species” explores the discovery, characterization and catalytic activity of a film that deposited on the electrode while studying a nickel complex under electrocatalytic conditions.
 
This literature discussion includes several sets of questions that address different aspects of the paper, as described in the implementation notes.

The Nature of Science

Submitted by Lori Watson / Earlham College on Thu, 07/02/2015 - 12:00
Description

I do this activity as an introduction to the nature of science.  An object (not easily guessable) is put into a paper bag.  The job of the class is to figure out what is in the bag. At first, the students are simply shown the bag (sense of sight). Discussion (hypotheses) ensues on what could be in the bag.  I then walk around and shake the bag so students can hear what's in it (hearing). This results in more discussion, with some previous ideas being discarded. The bag is then passed around and students can feel (but not open!) the bag and also try to smell it.

Advanced Inorganic Chemistry Course Videos

Submitted by Kathryn Haas / Saint Mary's College, Notre Dame, IN on Wed, 07/01/2015 - 12:02
Description

At this website, you will find a link to the syllabus and all lecture videos for a "flipped" version of an Advanced Inorganic Chemistry Course taught at Saint Mary's College (Notre Dame, IN).  I used Shiver & Atkins for this course, and the format is based off of Dr. Franz's course at Duke.  If anyone is interested in the problem sets, I will be happy to share, although much of the material I used is from VIPEr.  

Chemistry Infographics from Compound Interest

Submitted by Darren Achey / Kutztown University on Tue, 06/30/2015 - 14:48
Description

Compound Interest is a website that creates infographics for chemistry related events and items.  Specific examples of inorganic chemistry infographics include showing how the metal content in colored glass gives the glass its characteristic color, how the lighting of a match works with the conversion of red phosphorus to white phosphorus, and the various colors that transition metals can have in different oxidation states in water, among many other examples.

The Messy Chemist: Separating a Solid Mixture

Submitted by Mike Norris / University of Richmond on Tue, 06/30/2015 - 14:42
Description

This lab exercise gives students a problem scenario (a mixture of 4 solids) and asks them to determine a way to separate them from each other utilizing experimentation, previous knowledge, and discussion.  Students are expected to write a standard operating procedure detailing the method they determine for the separation at the end of the lab.  A modified version of this lab was originally performed in an accelerated summer class on chemistry given to 7th, 8th, and 9th graders that were on a track for early entrance into college.  The lab was done over the c

Synthesis of Aspirin- A Lewis Acid Approach

Submitted by Kathleen Field / WGU on Mon, 06/29/2015 - 21:29
Description

This is the procedure for a Fe(III) catalyzed synthesis of aspirin, an alternative to the traditionally sulfuric acid catalyzed synthesis of aspirin.  The prep compares and contrasts the Bronsted acid catalyzed esterification reaction with a Lewis acid iron (III) catalyzed pathway.  This can be used in different courses at different levels, but is it written for a general/intro level chemistry course.    

Teaching and Learning Package Library from University of Cambridge

Submitted by Vanessa / Albion College on Mon, 06/29/2015 - 15:56
Description

This is a resource that has short, animated tutorials on a variety of different topics. Most of the topics are materials science and/or engineering topics but there are several that would be of interest to chemistry students. (A full list of topics is given below.)