Second year

3 Mar 2019

Supramolecular Chemistry Videos

Submitted by Shirley Lin, United States Naval Academy
Evaluation Methods: 

I have yet to use this resource with students and therefore have no assessment of student learning to share at this time.

Evaluation Results: 

I have yet to use this resource with students.

Description: 

The Rebek Laboratory homepage contains information on and molecular visualizations of a variety of host-guest systems developed by the research group over several decades. The theme behind this set of examples is the use of hydrogen-bonding to achieve self-assembly. Under the "Research" tab, one can find four videos with narration: an introduction to molecular assembly and three videos of specific examples of self-assembled host systems (the cavitand, the cylinder and the volleyball). In addition, at the bottom of the tab, there are links to JSmol files for 5 host systems (tennis ball, jelly donut, cylindrical capsule, softball, and tetrameric capsule) that allow the assemblies to be visualized interactively.

 

This is a great resource for faculty looking for ways to incorporate the new ACS Committee on Professional Training guidelines to discuss macromolecular, supramolecular, mesoscale and nanoscale systems within the framework of their existing curricula.

Corequisites: 
Learning Goals: 

I have not yet used this resource with students but here are some possible relevant learning goals.

After viewing the Rebek Laboratory Homepage web source, students will be able to:

1) classify various self-assembled host-guest systems by the number of molecular components forming the assembly

2) identify the number and position of the hydrogen bonds that are responsible for the assembly of each host

3) identify the functional groups on the components of the host systems that are responsible for hydrogen bonding

4) state the experimentally determined percent volume of space generally occupied by guests that are encapsulated in these host systems

 

Subdiscipline: 
Implementation Notes: 

I have yet to use this website in my teaching but I hope that it may be a resource in expanding our curriculum in supramolecular chemistry.

Time Required: 
depends on use
12 Feb 2019

Advanced ChemDraw (2019 Community Challenge #2)

Submitted by S. Chantal E. Stieber, Cal Poly Pomona
Evaluation Methods: 

Students were evaluated during class for effort and participation, and the instructor gave immediate tips and feedback. After students submitted the assignment, it was graded for completion and effort.

 

Evaluation Results: 

Students were allowed to turn in the assignment 2 days later and 22/24 students completed the assignment. The most common errors were slight variances in bond angles and missing colors used in the literature figures. Overall, the quality of the submitted work was impressive, especially for second-year students.

Description: 

This in-class activity was designed for a Chemical Communications course with second-year students. It is the second part of a two-week segment in which students learn how to use ChemDraw (or similar drawing software to create digital drawings of molecules).

In this activity, students learn advanced techniques to visualize complex organometallic molecules and reaction schemes using ChemDraw. Students are presented with several images and reaction schemes taken directly from the organometallic literature and are tasked with recreating the images using ChemDraw. This gives students direct exposure to current literature, while learning useful skills in chemical visualization.

Learning Goals: 

Students will be able to:

1.    Convey 3-D structure of a molecule in a drawing.

2.    Recreate molecular drawings found in the literature.

3.    Create digital drawings of molecules using ChemDraw.

4.    Create digital drawings of reaction schemes & cycles.

Equipment needs: 

Computer for each student with ChemDraw installed.

Implementation Notes: 

This was implemented in a 24-student course in the week following an introduction to basic ChemDraw use. Students were shown the techniques in lecture format using the attached Powerpoint presentation. After the presentation, students had access to the slides and could refer to them while completing the activity. 

In-class most students were mostly able to complete the worksheet using the powerpoint slides as a guide. However, the instructor also walked around to give individual tips and instruction. 

The total time for the activity and lecture was 1 hour 50 min, but it could be shortened or assigned for homework.

In the section where students are asked to interpret molecular formulas, this is done ignoring ligand abbreviations, such as R groups or simplifications of chelating ligands. This could be left off, however it was a useful way to introduce students to drawing simplifications they may find in the literature. Most students just interpreted the formula based on what was drawn, and some students looked up the original papers to get a more accurate formula (although this takes much more time). 

 

Time Required: 
60-110 min
31 Jan 2019
Description: 

This set of slides was made for my Organometallics class based on questions about bridging hydrides and specifically the chromium molecule. I decided to make these slides to answer the questions, and do a DFT calc to show the MO's involved in bonding of the hydride. 

 

Corequisites: 
Learning Goals: 

A student will be able to explain bridging hydride bonding

A student will be able to perform electron counting on a chromium comples with a bridging hydride

A student will be able to interepret calculated DFT molecular orbitals. 

Time Required: 
15 min
Evaluation
Evaluation Methods: 

This was provided as supplementary material outside of lecture. 

3 Jan 2019

Venn Diagram activity- What is inorganic Chemistry?

Submitted by Sheila Smith, University of Michigan- Dearborn
Evaluation Methods: 

I did not assess this piece, except by participation in the discussion

Evaluation Results: 

I asked my students to write an open ended essay to answer the question (asked in that first day exercise): What is Inorganic Chemistry.

Interestingly, 2 of my 15 students drew a version of this Venn Diagram to accompany their essays.

Description: 

This Learning Object came to being sort of (In-)organically on the first day of my sophomore level intro to inorganic course. As I always do, I started the course with the IC Top 10 First Day Activity. (https://www.ionicviper.org/classactivity/ic-top-10-first-day-activity).  One of the pieces of that In class activity asks students- novices at Inorganic Chemistry- to sort the articles from the Most Read Articles from Inorganic Chemistry into bins of the various subdisciplines of Inorganic Chemistry.  As the discussion unfolded, I just sort of started spontaneously drawing a Venn Diagram on the board.  

I think Venn diagrams are an excellent logic tool, one that is too little applied these days for anything other than internet memes.  This is a nice little add-on activity to the first day.
 

Your Venn diagram will likely look different from mine.  You're right.

 

Learning Goals: 

The successful student should be able to:

  • identify the various sub-disciplines of inorganic chemistry.  
  • apply the rules of logic diagrams to construct overlapping fields of an Venn diagram.

 

Prerequisites: 
Corequisites: 
Equipment needs: 

colored chalk may be handy but not required.

Implementation Notes: 

I used this activity in conjuction with a first day activity LO (also published on VIPEr).

I shared a clean copy (this one) with the students after the class where we discussed this.

 

Time Required: 
10-15 minutes
12 Dec 2018

Foundations Inorganic Chemistry for New Faculty

Submitted by Chip Nataro, Lafayette College

What is a foundations inorganic course? Here is a great description

https://pubs.acs.org/doi/abs/10.1021/ed500624t

 

Prerequisites: 
Corequisites: 
Course Level: 
8 Nov 2018

5-ish Slides about Enemark-Feltham Notation

Submitted by Kyle Grice, DePaul University
Description: 

This is a basic introduction to Enemark-Feltham that can be used in conjunction with any literature that has Iron nitrosyls in it. I made this as a follow up to the work that came ouf of the 2018 VIPEr workshop in UM-Dearborn. 

Corequisites: 
Learning Goals: 

A student will be able to detemine the Enemark-Feltham label for a simple iron nitrosyl

A student will be able to describe bonding differences between NO+, NO, and NO- ligands. 

Implementation Notes: 

I haven't used this yet, but It can be a quick lecture module or online module to help students understand Enemark-Feltham before analyzing a paper on iron nitrosyls. 

Time Required: 
10 min
Evaluation
Evaluation Methods: 

I have not used this yet. 

Evaluation Results: 

I have not used this yet. 

27 Aug 2018

Interactive Syllabus

Submitted by Amanda Reig, Ursinus College
Description: 

The Interactive Syllabus is a web-based survey delivery of syllabus content to your students prior to the first day of classes.  The web link below explains many of the features and advantages, but in my opinion some of the best benefits are (1) students actually engage with the content on the syllabus in meaningful ways, (2) it saves class time on the first day, and (3) can encourage students to share questions/concerns they may not have been as eager to share in person.

The survey is built on the qualtrics platform, but could be adapted for other programs.  

Prerequisites: 
Corequisites: 
Related activities: 
Implementation Notes: 

I implemented the approach in my General Chemistry I course this fall, and will likely adapt for all future courses.  I based my survey on the one that can be obtained at the website, but did make modifications. I have uploaded a pdf of my version of the survey, and would be happy to share the Qualtric Survey File to anyone interested (it is not an allowed file type so cannot be posted here).

I sent an email to students on Friday before classes began Monday morning containing a PDF of the syllabus and the link to the survey.  I did not assign any points for completion of the survey - just asked them to do so before 8 pm on Sunday (so I would have time to review their answers).  I sent a reminder email mid-day on Sunday.  I had around an 85% response rate.  I estimate it takes around 15 - 20 minutes for a student to work through.  It took around 2 hours for me to adapt the survey to my own preferences based on my syllabus.

Pages

Subscribe to RSS - Second year