Inorganic Chemistry Wikibook

Submitted by Tom Mallouk / Pennsylvania State University on Wed, 05/27/2015 - 09:49
Description

Frustrated by the lack of inorganic textbooks that really fit my materials-oriented first-semester inorganic course, I embarked on a project with my students to create a free online textbook. The students did most of the heavy lifting, and I'm pleased to report that the next class to use the book rather liked it. It is still a work in progress, but I would like to encourage everyone to check it out and edit it if the spirit moves you.

Electron Counting and CBC Assignments for Organometallic Complexes

Submitted by Matt Whited / Carleton College on Tue, 03/17/2015 - 16:46
Description

This in-class group activity provides several examples of varying difficulty for students to assign MLXZ classifications and electron counts to organometallic complexes.  Though some of the problems are straightforward, some are really ambiguous, and the intent is for student groups to grapple with the issues raised by each one and present their findings to the class to spark further discussion.

Play-Doh Molecular Orbitals

Submitted by Sheri Lense / University of Wisconsin Oshkosh on Mon, 02/02/2015 - 13:56
Description

This is a simple activity designed to help students visualize the interaction of atomic orbitals to form molecular orbitals.  Students construct atomic orbitals out of Play-Doh and determine whether overlap of a given pairs of atomic orbitals along the specified axis can result in a σ, π, or δ interaction or no net interaction.  I do this activity following a reading assignment and lecture on the formation of molecular orbitals from atomic orbitals that cover the various types of interactions.  Students then work in groups of 3-4 to complete the instructions described on the attached worksh

Organometallics course F 2014

Submitted by Adam Johnson / Harvey Mudd College on Fri, 01/23/2015 - 16:54

This is a collection of LOs that I used to teach a junior-senior seminar course on organometallics during Fall 2014 at Harvey Mudd College.

Cobalt-Ammine complexes and theories of bonding in metals

Submitted by EGunn / Simmons College on Mon, 01/12/2015 - 12:54
Description

This is a two-week lab in which students synthesize and then characterize three Werner cobalt complexes using IR, UV/VIS and computer calculations using Spartan. Syntheses are based on procedures from:

Angelici, R. J. Synthesis and Technique in Inorganic Chemistry. University Science Books, 1996, pp 13-17.

Borer, L.L.; Erdman, H.W.; Norris, C.; Williams, J.; Worrell, J. Synthesis of trans-Tetraamminedichlorocobalt (III) chloride, Inorganic Syntheses, Vol 31, 1997, pp 270-271.

d-Orbital Splitting Patterns in a Variety of Ligand Geometries

Submitted by Anthony L. Fernandez / Merrimack College on Mon, 12/29/2014 - 10:43
Description

In this activity, the provided d orbital splitting patterns need to be matched with ligand geometries. Students are provided with the d orbital splitting diagrams for 6 ligand geometries (octahedral, trigonal bipyramidal, square pyramidal, tetrahedral, square planar, and linear). A web browser is used to view an animation (developed by Flick Coleman) which allows for the visualization of the relationship between the positions of the metal d orbitals and the ligands. Given this information, students should then be able to qualitatively rank the orbitals from highest to lowest energy.

Maggie's LOs

Submitted by Chip Nataro / Lafayette College on Fri, 09/12/2014 - 17:25

Ligand Lineup

Submitted by Sheri Lense / University of Wisconsin Oshkosh on Fri, 08/22/2014 - 11:40
Description

This is a kinesthetic activity in which students must utilize knowledge of the σ-donating, π-donating and π-accepting ability of ligands in order to rank the ligands in the spectrochemical series.  Students are each assigned a ligand on a card.  Suggested ligands are I-, Br-, Cl-, F-, ONO-, NO2- OH-, H2O, pyridine, NH3, ethylenediamine, bipyridine, phenanthroline, PPh3, CN- and CO.  Each student must evaluate the π-accepting, π-donating and σ-donating ability o

A Tale of Two Structures

Submitted by Chip Nataro / Lafayette College on Tue, 08/12/2014 - 10:32
Description

In this activity, students will compare and contrast two closely related structures, [Pd(dcpf)PR3]2+ (dcpf = 1,1'-bis(dicyclohexylphosphino)ferrocene; R = Me or Ph). They will be required to obtain the cif files from the supporting information of a paper. They will then make a variety of measurments in the two stuctures. These measurements can be made using a variety of different freely available programs. Instructions are provided for Mercury 3.3 and Olex2. Finally, students will be required to provide a rationale for the differences in the two structures.