SLiThEr #45 on Teaching f-block Chemistry

Submitted by Kari Stone / Lewis University on Wed, 02/15/2023 - 13:22
Description

Patrick Barber (The University of West Florida) demonstrates strategies to teach f-block chemistry to undergraduates.

A coordination table of the d-block elements

Submitted by Barbara Reisner / James Madison University on Sun, 10/09/2022 - 08:51
Description

Stanley-Gray, Zhang, and Venkataraman from UMass Amherst mined the Cambridge Structural Database to put together graphics that show trends for coordination geometry, distribution of oxidation states, overall coordination geometry,  and coordination geometry with specific ligands to understand the influence of ligand on geometry.

Inorganic Chemistry

Submitted by Abdul K. Mohammed / North Carolina Central University on Tue, 08/23/2022 - 16:51

Inorganic Chemistry I

Submitted by Rudy Luck / Michigan Technological University on Wed, 08/17/2022 - 15:52
Description

Descriptive chemistry of the main group elements with some emphasis on the non-metals.  Transition metal compounds: aspects of bonding, spectra, and reactivity; complexes of n-acceptor ligands; organometallic compounds and their role in catalysis; metals in biological systems; preparative, analytical, and instrumental techniques. 

Inorganic Chemistry SC356

Submitted by Shirley Lin / United States Naval Academy on Fri, 08/12/2022 - 12:02
Description

From the course catalog: The chemistry of the Main Group elements and the transition metals are studied with emphasis on the properties, structures, and reactivities of these elements and their compounds.

 

Inorganic Chemistry

Submitted by Briana Aguila-Ames / New College of Florida on Fri, 07/01/2022 - 11:20
Description

Syllabus for Inorganic Chemistry lecture taught in Spring 2022.

Inorganic Chemistry

Submitted by Jennifer Young / Azusa Pacific University on Tue, 06/28/2022 - 17:57
Description

This course lays a foundation in the subjects of atomic structure, bonding theory, symmetry theory, and acid-base chemistry, which is then used to explore advanced topics involving crystalline compounds, coordination compounds, and organometallic compounds. Topics include bonding, spectroscopy, and kinetics.

Organometallic Chemistry

Submitted by Laina Geary / University of Nevada, Reno on Tue, 06/28/2022 - 17:51
Description

The goal of this course is to provide an in-depth introduction to the broad subject of organometallic chemistry. Selected topics include: main group organometallics, oxidation states, ligands, structure and bonding, mechanism and mechanistic analysis, cross coupling, hydrogenation, hydroformylation, olefin polymerization, olefin metathesis, and other applications in homogeneous catalysis and organic synthesis.

Analyzing the Proposed Reaction Profile in “Changing the Charge: Electrostatic Effects in Pd-Catalyzed Cross-Coupling”
Description

This LO is a literature discussion based on one figure in Chan et. al.

Megan Lazorski / Metropolitan State University of Denver Tue, 06/28/2022 - 17:20
Introduction to Borane and Carborane Clusters: Practice with Point Groups, Electron Counting, and Electronegativity with Computational Support
Description

This LO uses borane and carborane clusters to practice assigning point groups and counting electrons. It also asks students to recall electronegativity trends to predict dipoles, and they can check their predictions against calculated Mulliken charges.

KVH / Harvey Mudd College Tue, 06/28/2022 - 14:20