SLiThEr #5: Favorite Learning Objects (LO's)

Submitted by Kyle Grice / DePaul University on Tue, 12/29/2020 - 15:23
Description

This is the fifth SLiThEr (Supporting Learning with Interactive Teaching: a Hosted, Engaging Roundtable), hosted by Drs. Kari Stone and Anthony Fernandez, in which they present and discuss some of their favorite Learning Objects from VIPEr and how they use them. 

SLiThEr #4: Flipping Undergraduate Inorganic Chemistry: Effect on Diversity and Inclusivity

Submitted by Kyle Grice / DePaul University on Tue, 12/29/2020 - 15:09
Description

This is the 4th in the series of SLiThErs (Supporting Learning with Interactive Teaching: a Hosted, Engaging Roundtable). This was presented by Dr. Caroline Saouma on how flipping her inorganic chemistry course helped diversity and inclusivity. This ties in very well with SLiThEr #3, which was on flipped classrooms as well (https://www.ionicviper.org/web-resources-and-apps/slither-3-flipping-yo…). 

SLiThEr #3: Flipping Your Classroom

Submitted by Kyle Grice / DePaul University on Tue, 12/29/2020 - 14:46
Description

This is the 3rd SLiThEr (Supporting Learning with Interactive Teaching: a Hosted, Engaging Roundtable) in the series, hosted by both Drs. Anthony Fernandez and Meghan Porter, who discuss how they flip their classrooms. One of the classes discussed was a general chemistry course, and another was an intermediate inorganic chemistry course. The SLiThEr was recorded and posted on YouTube (see web resource link below). 

SLiThEr #1: Creating online inorganic chemistry labs

Submitted by Kyle Grice / DePaul University on Tue, 12/29/2020 - 14:29
Description

This is the link to the first SLiThEr (Supporting Learning with Interactive Teaching: a Hosted, Engaging Roundtable), presented by Kyle Grice and Hosted by Chip Nataro. The SLiThEr was recorded and posted on YouTube (see the web resources link). 

This particular roundtable focused on the teaching of a Junior/Senior-level inorganic chemistry laboratory completely online. Kyle presented on what he did in Spring 2020 when he had to pivot quickly to a fully remote modality with only a week or so of planning. 

SLiThErs - Supporting Learning with Interactive Teaching: a Hosted, Engaging Roundtable

A collection of all of the IONiC VIPEr SLiThErs (Supporting Learning with Interactive Teaching: a Hosted, Engaging Roundtable). These events are short presentations on a topic followed by a period of discussion between the presenter and live participants. Each of these events is recorded and posted to the IONiC VIPEr YouTube Channel.

Chip Nataro / Lafayette College Thu, 12/17/2020 - 14:18

Pencasts for Inorganic Chem: Finding Vibrations from Group Theory

Submitted by Kyle Grice / DePaul University on Mon, 12/14/2020 - 13:18
Description

These are two "Livescribe Pencasts" I have used for inorganic chemistry. I made them with an Echo 2 Livescribe pen for my 10-week Junior/Senior Inorganic chemistry course. We teach with MFT and I use these as supplemental materials outside of class (both for f2f and online versions of this class).

Luminescence Properties of a Dysprosium(III) Complex

Submitted by Amanda Bowman / Colorado College on Thu, 10/08/2020 - 18:15
Description

This literature discussion explores the physical structure, electronic structure, and luminescent properties of a lanthanide coordination complex (dysprosium) through discussion of “Synthesis, Structure, Photoluminescence, and Electroluminescence Properties of a New Dysprosium Complex,” Li et al. J. Phys. Chem.

First Look at Coordination Complexes

Submitted by Anthony L. Fernandez / Merrimack College on Sun, 09/06/2020 - 15:08
Description

When transitioning into inorganic chemistry from organic chemistry, students are surprised by the complexity of metal complexes. To ease this transition, students are asked to look at the crystal structure of a coordination complex [(+/-)cis-dichloro-bis(ethylenediamine)-cobalt(III) chloride monohydrate], make some observations about what they see, and provide a list of questions that they would like answered. Students usually note that there are atoms/ions that are "floating" and are seemingly unattached to anything else in the structure.

Synthesis of Fluorescent Aluminum Complexes

Submitted by Taylor Haynes / California Polytechnic, San Luis Obispo on Fri, 08/28/2020 - 15:34
Description

In this experiment, Students synthesize a Schiff Base and the corresponding aluminum complex to measure fluorescence. The lab provides exposure to air-free synthetic techniques, including the use of Schlenk Line techniques and safe handling of sure-seal bottles. Following data collection, students will be able to explain fluorescence spectroscopy and compare it to absorbance spectroscopy.

Jahn-Teller effect, theory and examples

Submitted by Adam Johnson / Harvey Mudd College on Thu, 08/06/2020 - 18:44
Description

At a recent SLiThEr workshop, a request was put out for an introduction to the Jahn-Teller effect. I had already prepared several slides showcasing single crystal X-ray data for my class this spring so I put this together with some additional examples from my lab and the literature.  Single crystal XRD data is presented to support the claims.